NodeJS的buffer使用总结

buffer拼接数据

写网页爬虫,或者读取文件流,接收网络数据流的时候,我们经常使用buffer来拼接接受的数据块。关于这个字符串拼接,在java中的字符流或者字节流是可以指定编码的,或者接收后转换编码,而在NodeJS中的处理就有些不同了。

NodeJS的buffer使用总结

转载请注明出处://fed123.oss-ap-southeast-2.aliyuncs.com/2014/09/09/2014_nodejs_buffer/

字符串长度

看看PHP对字符串长度的判断结果:

以上三行判断分别返回10、30、10。对于中国人而言,strlen这个方法对于Unicode的判断结果是非常让人疑惑。而看看JavaScript中对字符串长度的判断,就知道这个length属性对调用者而言是多么友好。

尽管在计算机内部,一个中文字和一个英文字占用的字节位数是不同的,但对于用户而言,它们拥有相同的长度。我认为这是JavaScript中 String处理得精彩的一个点。正是由于这个原因,所有的数据从后端传输到前端被调用时,都是这般友好的字符串。所以对于前端工程师而言,他们是没有字符串Buffer的概念的。如果你是一名前端工程师,那么从此在与Node.js打交道的过程中,一定要小心Buffer啦,因为它比传统的String 要调皮一点。

Buffer使用

像许多计算机的技术一样,都是从国外传播过来的。那些以英文作为母语的传道者们应该没有考虑过英文以外的使用者,所以你有可能看到如下这样一段代码在向你描述如何在data事件中连接字符串。

如果这个文件读取流读取的是一个纯英文的文件,这段代码是能够正常输出的。但是如果我们再改变一下条件,将每次读取的buffer大小变成一个奇数,以模拟一个字符被分配在两个trunk中的场景。

我们将会得到以下这样的乱码输出:

造成这个问题的根源在于data += trunk语句里隐藏的错误,在默认的情况下,trunk是一个Buffer对象。这句话的实质是隐藏了toString的变换的:

由于汉字不是用一个字节来存储的,导致有被截破的汉字的存在,于是出现乱码。解决这个问题有一个简单的方案,是设置编码集:

这将得到一个正常的字符串响应:

遗憾的是目前Node.js仅支持hex、utf8、ascii、binary、base64、ucs2几种编码的转换。对于那些因为历史遗留问题依旧还生存着的GBK,GB2312等编码,该方法是无能为力的

string_decoder

在这个例子中,如果仔细观察,会发现一件有趣的事情发生在设置编码集之后。我们提到data += trunk等价于data = data.toString() + trunk.toString()。通过以下的代码可以测试到一个汉字占用三个字节,而我们按11个字节来截取trunk的话,依旧会存在一个汉字被分割在两个trunk中的情景。

按照猜想的toString()方式,应该返回的是事件循xxx和请求xxx象才对,其中“环”字应该变成乱码才对,但是在设置了encoding(默认的utf8)之后,结果却正常显示了,这个结果十分有趣。
NodeJS的buffer使用总结
在好奇心的驱使下可以探查到data事件调用了string_decoder来进行编码补足的行为。通过string_decoder对象输出第一个截取Buffer(事件循xx)时,只返回事件循这个字符串,保留xx。第二次通过string_decoder对象输出时检测到上次保留的xx,将上次剩余内容和本次的Buffer进行重新拼接输出。于是达到正常输出的目的。

string_decoder,目前在文件流读取和网络流读取中都有应用到,一定程度上避免了粗鲁拼接trunk导致的乱码错误。但是,遗憾在于string_decoder目前只支持utf8编码。它的思路其实还可以扩展到其他编码上,只是最终是否会支持目前尚不可得知。

buffer正确使用

那么万能的适应各种编码而且正确的拼接Buffer对象的方法是什么呢?我们从Node.js在github上的源码中找出这样一段正确读取文件,并连接buffer对象的方法:

在end事件中通过细腻的连接方式,最后拿到理想的Buffer对象。这时候无论是在支持的编码之间转换,还是在不支持的编码之间转换(利用iconv模块转换),都不会导致乱码。
上述一大段代码仅只完成了一件事情,就是连接多个Buffer对象,而这种场景需求将会在多个地方发生,所以,采用一种更优雅的方式来完成该过程是必要的。笔者基于以上的代码封装出一个bufferhelper模块,用于更简洁地处理Buffer对象。可以通过NPM进行安装:

下面的例子演示了如何调用这个模块。与传统data += trunk之间只是bufferHelper.concat(chunk)的差别,既避免了错误的出现,又使得代码可以得到简化而有效地编写。

所以关于Buffer对象的操作的最佳实践是:

保持编码不变,以利于后续编码转换
使用封装方法达到简洁代码的目的

NodeJS提供的buffer

参考buffer API: https://nodejs.org/api/buffer.html
最后我们看一下buffer的读取是如何进行的,buffer的读取主要包括以下几个api:
1、buf = new Buffer(),然后就可以直接读取buf
2、buf.toString([encoding], [start], [end])
3、buf.toJSON()
4、buf[index]
5、buf.slice([start], [end])
6、buf.readUInt8(offset, [noAssert])等其他read操作

buf = new Buffer() 和 buf[index]

创建一个buf实例,会返回一个buf数组给这个实例,就像我们直接打印buf会出现以下内容:

通过 Buffer::MakeFastBuffer 这个方法来关联起来的,我们看主要代码:

这样我们的buf实例看起来就像是一个数组了

buf.toString([encoding], [start], [end])

这个是我们读取buf最常用的方法,我们可以将一些字符串存入buf,然后使用toString方法将他们取出来。

buf.slice([start], [end])

这个是对buf进行剪切的功能,我们看下代码:

然后可以参考buffer的构造函数来追踪slice的创建

总结

我们大致了解了buffer的工作机制之后,我们的日常工作有了一些注意,什么时候该用buffer,什么时候不该用,使用buffer应该注意哪些问题?

写入速度的测试

读取速度都不需要测试了,肯定string更快,buffer还需要toString()的操作。
所以我们在保存字符串的时候,该用string还是要用string,就算大字符串拼接string的速度也不会比buffer慢。
那什么时候我们又需要用buffer呢?没办法的时候,当我们保存非utf-8字符串,2进制等等其他格式的时候,我们就必须得使用了。

buffer不得不提的8KB

buffer著名的8KB载体,举个例子好比,node把一幢大房子分成很多小房间,每个房间能容纳8个人,为了保证房间的充分使用,只有当一个房间塞满8个人后才会去开新的房间,但是当一次性有多个人来入住,node会保证要把这些人放到一个房间中,比如当前房间A有4个人住,但是一下子来了5个人,所以node不得不新开一间房间B,把这5个人安顿下来,此时又来了4个人,发现5个人的B房间也容纳不下了,只能再开一间房间C了,这样所有人都安顿下来了。但是之前的两间房A和B都各自浪费了4个和3个位置,而房间C就成为了当前的房间。

具体点说就是当我们实例化一个新的Buffer类,会根据实例化时的大小去申请内存空间,如果需要的空间小于8KB,则会多一次判定,判定当前的8KB载体剩余容量是否够新的buffer实例,如果够用,则将新的buffer实例保存在当前的8KB载体中,并且更新剩余的空间。

buffer会存在内存泄露情况,所以一定要注意,就算只有1byte的buffer空间没释放掉,整个8KB的内存都不会被V8释放。

buffer字符串的连接

我们接受post数据时,node是以流的形式发送上来的,会触发ondata事件,所以我们见到很多代码是这样写的:

下面我们比较一下两者的性能区别:

在1000次拼接过程中,两者的性能几乎相差一倍,而且当客户上传的是非UTF8的字符串时,直接+=还容易出现错误。

独享的空间

如果你想创建一个独享的空间,独立的对这块内存空间进行读写,有两种办法,1是实例化一个超过8KB长度的buffer,另外一个就是使用slowbuffer类。

buffer的释放

很遗憾,我们无法手动对buffer实例进行GC,只能依靠V8来进行,我们唯一能做的就是解除对buffer实例的引用。

快速刷掉buffer

最快的方法就是buffer.fill

谢谢!

欢迎关注皓眸学问公众号(扫描左侧二维码),每天好文、新技术!任何学习疑问或者工作问题都可以给我留言、互动。T_T 皓眸大前端开发学习 T_T



请遵守《互联网环境法规》文明发言,欢迎讨论问题
扫码反馈

扫一扫,反馈当前页面

咨询反馈
扫码关注
返回顶部